Boundary behavior of the Kobayashi distance in pseudoconvex Reinhardt domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serre Problem for Unbounded Pseudoconvex Reinhardt Domains in C

We give a characterization of non-hyperbolic pseudoconvex Reinhardt domains in C for which the answer to the Serre problem is positive.

متن کامل

Boundary Behavior of the Bergman Kernel Function on Some Pseudoconvex Domains in C "

Let il be a bounded pseudoconvex domain in C" with smooth denning function r and let zo 6 bCl be a point of finite type. We also assume that the Levi form ddr(z) of bil has (n — 2)-positive eigenvalues at z0 . Then we get a quantity which bounds from above and below the Bergman kernel function in a small constant and large constant sense.

متن کامل

Comparison between the Kobayashi and Carathéodory Distances on Strongly Pseudoconvex Bounded Domains in C"

In this paper we prove that the ratio between the Carathéodory distance and the Kobayashi distance in a strongly pseudoconvex bounded domain in C" is arbitrarily close to 1 whenever at least one of the points is sufficiently near the boundary.

متن کامل

On isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains

Let 1 and 2 be strongly pseudoconvex domains in Cn and f : 1 → 2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C1 map to ̄1. We then prove that f |∂ 1 : ∂ 1 → ∂ 2 is a CR or anti-CR diffeomorphism. It follows that 1 and 2 must be biholomorphic or anti-biholomorphic. Mathematics Subject Classification (2000): 32F45 (primary); 32Q45 (secondary).

متن کامل

Symmetric continuous Reinhardt domains

whenever |ζ1|, . . . , |ζn| ≤ 1 . In 1974 [11] Sunada investigated the structure of bounded Reinhardt domains containing the origin from the viewpoint of biholomorphic equivalence. He was able to describe completely the symmetric Reihardt domains which, up to linear isomomorphism, turned to be direct products of Euclidean balls. Our aim in this paper is to study infinite dimensional analogs of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2012

ISSN: 0026-2285

DOI: 10.1307/mmj/1347040260